I am a principal scientist in the Research & Development organisation of A.P. Møller-Mærsk.
My primary research interests are general aspects of computational statistics, measurement error models, missing data and causal inference with applications in logistics.
PhD in Biostastics, 2011
University of Copenhagen, Department of Biostatistics
MSc in Mathematics, 2006
University of Copenhagen, Department of Mathematics
The 74HC165 is an 8-bit parallel-load or serial-in shift register.
Wiring:
Clocking is accomplished by a low-to-high transition of the clock (CLK) input while SH/LD is held high and CLK INH is held low. CLK INH can be wired to GND to save a pin on the microcontroller. Unused inputs pins should be grounded as well.
Multiple 74HC165 ICs can be daisy chained by wiring the serial-out pin 9 (QH) to pin 10 (SER) of the succeeding IC allowing us to tie multiple 74165 ICs together that can be controlled using only 3 pins.
\(\newcommand{\pr}{\mathbb{P}}\newcommand{\E}{\mathbb{E}}\) Relative risks (and risk differences) are collapsible and generally considered easier to interpret than odds-ratios. In a recent publication Richardson et al (JASA, 2017) proposed a new regression model for a binary exposure which solves the computational problems that are associated with using for example binomial regression with a log-link function (or identify link for the risk difference) to obtain such parameter estimates.
Let \(Y\) be the binary response, \(A\) binary exposure, and \(V\) a vector of covariates, then the target parameter is
\begin{align*} &\mathrm{RR}(v) = \frac{\pr(Y=1\mid A=1, V=v)}{\pr(Y=1\mid A=0, V=v)}. \end{align*}
Let \(p_a(V) = \pr(Y \mid A=a, V), a\in\{0,1\}\), then the idea is to posit a linear model for \[ \theta(v) = \log \big(RR(v)\big) \] and a nuisance model for the odds-product \[ \phi(v) = \log\left(\frac{p_{0}(v)p_{1}(v)}{(1-p_{0}(v))(1-p_{1}(v))}\right) \] noting that these two parameters are variation independent. Similarly, a model can be constructed for the risk-difference on the following scale \[\theta(v) = \mathrm{arctanh} \big(RD(v)\big).\]
Here I consider the 74HC595 - an 8-bit serial-in/serial or parallel-out shift register with a storage register and 3-state outputs.
If higher load is required there is also the TPIC6C595 (e.g., for driving LEDs), or it should be paired with for example ULN2803 or similar. For multiple inputs see the 74HC165.
The basic usage is to serially transfer a byte from a microcontroller to the IC. When latched the byte will then in parallel be available on output pins QA-QH (Q0-Q7).